Search results for "image resolution"
showing 10 items of 377 documents
Time multiplexing super-resolved imaging without a priori knowledge of the spatial distribution of the encoding structured illumination
2021
Time multiplexing is a super-resolution technique that sacrifices time to overcome the resolution reduction obtained because of diffraction. There are many super resolution methods based on time multiplexing, but all of them require a priori knowledge of the time changing encoding mask, which is projected on the object and used to encode and decode the high-resolution information. In this paper, we present a time multiplexing technique that does not require the a priori knowledge on the projected encoding mask. First, the theoretical concept of the technique is demonstrated; then, numerical simulations and experimental results are presented.
FLEX End-to-End Mission Performance Simulator
2016
The FLuorescence EXplorer (FLEX) mission, selected as the European Space Agency's eighth Earth Explorer, aims to globally measure the sun-induced-chlorophyll-fluorescence spectral emission from terrestrial vegetation. In the frame of the FLEX mission, several industrial and scientific studies have analyzed the instrument design, image processing algorithms, or modeling aspects. At the same time, a common tool is needed to address the overall FLEX mission performance by combining all these features. For this reason, an end-to-end mission performance simulator has been developed for the FLEX mission (FLEX-E). This paper describes the FLEX-E software design, which combines the generation of co…
Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC
2019
Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 × 50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…
Continuous Refocusing for Integral Microscopy with Fourier Plane Recording
2018
Integral or light field imaging is an attractive approach in microscopy, as it allows to capture 3D samples in just one shot and explore them later through changing the focus on particular depth planes of interest. However, it requires a compromise between spatial and angular resolution on the 2D sensor recording the microscopic images. A particular setting called Fourier Integral Microscope (FIMic) allows maximizing the spatial resolution for the cost of reducing the angular one. In this work, we propose a technique, which aims at reconstructing the continuous light field from sparse FIMic measurements, thus providing the functionality of continuous refocus on any arbitrary depth plane. Ou…
Resolution enhancement in quantitative phase microscopy
2019
Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, suc…
Sensitivity of the C-band SRTM DEM Vertical Accuracy to Terrain Characteristics and Spatial Resolution
2008
This work reports the results of a careful regional analysis of the SRTM DEM (Shuttle Radar Topography Mission – Digital Elevation Model) vertical accuracy as a function of both topography and Land-Use/Land Cover (LULC). Absolute vertical errors appear LULC-dependent, with some values greater than the stated accuracy of the SRTM dataset, mostly over forested areas. The results show that the structure of the errors is well modeled by a cosine power n of the local incidence angle (θloc). SRTM quality is further assessed using slope and topographical similarity indexes. The results show a lower relative accuracy on slope with a R2 = 0.5 and a moderate agreement (Kappa ≈ 0.4) between SRTM- and …
A wavelet-based demosaicking algorithm for embedded applications
2010
This paper presents an alternative to the spatial reconstruction of the sampled color filter array acquired through a digital image sensor. A demosaicking operation has to be applied to the raw image to recover the full-resolution color image. We present a low-complexity demosaicking algorithm processing in the wavelet domain. Produced images are available at the output of the algorithm either in the spatial representation or directly in the wavelet domain for high-level post processing in the latter domain. Results show that the computational complexity has been lowered by a factor of five compared to state of the art demosaicking algorithms.
Batch Methods for Resolution Enhancement of TIR Image Sequences
2015
Thermal infrared (TIR) time series are exploited by many methods based on Earth observation (EO), for such applications as agriculture, forest management, and meteorology. However, due to physical limitations, data acquired by a single sensor are often unsatisfactory in terms of spatial or temporal resolution. This issue can be tackled by using remotely sensed data acquired by multiple sensors with complementary features. When nonreal-time functioning or at least near real-time functioning is admitted, the measurements can be profitably fed to a sequential Bayesian algorithm, which allows to account for the correlation embedded in the successive acquisitions. In this work, we focus on appli…
Multitemporal fusion of Landsat and MERIS images
2011
Monitoring Earth dynamics from current and future observation satellites is one of the most important objectives for the remote sensing community. In this regard, the exploitation of image time series from sensors with different characteristics provides an opportunity to increase the knowledge about environmental changes, which are needed in many operational applications, such as monitoring vegetation dynamics and land cover/use changes. Many studies in the literature have proven that high spatial resolution sensors like Landsat are very useful for monitoring land cover changes. However, the cloud cover probability of many areas and the 15-days temporal resolution restrict its use to monito…
Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy
2016
Abstract In this study, accurate estimates of daily actual evapotranspiration, ET a , were obtained based on the direct Penman–Monteith application, in which the bulk surface resistance term was computed by considering, as main input, daily remotely sensed Land Surface Temperature (LST). In particular, Eddy Covariance measurements of ET a , associated to LST obtained by MODIS time series (MOD11A2) characterized by 8-day resolution, allowed to calibrate a simple bulk surface resistance model, based on two-years of data observations collected in a quite homogeneous irrigation district of Sicily, where olive grove is the main crop. The model was then validated by an independent database collec…